Leakage detection in water pipe networks using a Bayesian probabilistic framework
نویسندگان
چکیده
A Bayesian system identification methodology is proposed for leakage detection in water pipe networks. The methodology properly handles the unavoidable uncertainties in measurement and modeling errors. Based on information from flow test data, it provides estimates of the most probable leakage events (magnitude and location of leakage) and the uncertainties in such estimates. The effectiveness of the proposed framework is illustrated by applying the leakage detection approach to a specific water pipe network. Several important issues are addressed, including the role of modeling error, measurement noise, leakage severity and sensor configuration (location and type of sensors) on the reliability of the leakage detection methodology. The present algorithm may be incorporated into an integrated maintenance network strategy plan based on computer-aided decision-making tools. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملMISE-PIPE: Magnetic induction-based wireless sensor networks for underground pipeline monitoring
Underground pipelines constitute one of the most important ways to transport large amounts of fluid (e.g. oil and water) through long distances. However, existing leakage detection techniques do not work well in monitoring the underground pipelines due to the harsh underground environmental conditions. In this paper, a new solution, the magnetic induction (MI)-based wireless sensor network for ...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کامل